Handbook of Relativistic Quantum Chemistry, ed. W. Liu (Springer, Berlin, 2017).

W. Liu*, Big picture of relativistic molecular quantum mechanics, Nat. Sci. Rev. 3, 204 (2016).

R. Zhao, Y. Xiao, Y. Zhang, and W. Liu*, Exact two-component relativistic energy band theory and application, J. Chem. Phys. 144, 044105 (2016).

W. Liu, Effective quantum electrodynamics Hamiltonians: A tutorial review, Int. J. Quantum Chem. 115, 631 (2015); (E) 116, 971 (2016).

W. Liu*, Advances in relativistic molecular quantum mechanics, Phys. Rep. 537, 59 (2014).

W. Liu*, Perspective: Relativistic Hamiltonians, Int. J. Quantum Chem. 114, 983 (2014).

W. Liu* and I. Lindgren, Going beyond ‘no-pair relativistic quantum chemistry’, J. Chem. Phys. 139, 014108 (2013); (E) 144, 049901 (2016).

W. Liu*, Perspectives of relativistic quantum chemistry: The negative energy cat smiles, Phys. Chem. Chem. Phys. 14, 35 (2012).

W. Liu*, The ‘big picture’ of relativistic molecular quantum mechanics, in Theory and Applications in Computational Chemistry: The First Decade of the Second Millenium, AIP Conf. Proc. 1456, 62 (2012).

W. Liu*, Ideas of relativistic quantum chemistry, Mol. Phys. 108, 1679 (2010).

Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians: Molecular Properties, J. Chem. Phys. 141, 054111 (2014).

Z. Li, Y. Xiao, and W. Liu*, On the spin separation of algebraic two-component relativistic Hamiltonians, J. Chem. Phys. 137, 154114 (2012).

W. Liu* and D. Peng, Exact two-component Hamiltonians revisited, J. Chem. Phys. 131, 031104 (2009).

D. Peng, J. Ma, and W. Liu*, On the construction of Kramers paired double group symmetry functions, Int. J. Quantum Chem. 109, 2149 (2009).

D. Peng, W. Liu*, Y. Xiao, and L. Cheng, Making four-and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”, J. Chem. Phys. 127, 104106 (2007).

W. Liu* and D. Peng, Infinite-order Quasirelativistic Density Functional Method Based on the Exact Matrix Quasirelativistic Theory, J. Chem. Phys. 125, 044102 (2006); (E) 125, 149901 (2006).

W. Kutzelnigg* and W. Liu*, Quasirelativistic Theory Equivalent to Fully Relativistic Theory, J. Chem. Phys. 123, 241102 (2005).

Y. Lei, W. Liu* and M. R. Hoffmann*, Further development of SDSPT2 for strongly correlated electrons, Mol. Phys. 115, 2696-2707 (2017).

C. Huang, W. Liu*, Y. Xiao, and M. R. Hoffmann, iVI: an iterative vector interaction method for large eigenvalue problems, J. Comput. Chem. 38, 2481-2499 (2017).

A. Grofe, X. Chen, W. Liu, and J. Gao*, Spin-multiplet components and energy splittings by multistate density functional theory, J. Phys. Chem. Lett. 8, 4838-4845 (2017).

P. Cassam-Chena¨ı*, B. Suo, and W. Liu*, A quantum chemical definition of electron-nucleus correlation, Theor. Chem. Acc. 136, 52 (2017).

H. Li, W. Liu*, and B. Suo, Localization of open-shell molecular orbitals via least change from fragments to molecule, J. Chem. Phys. 146, 104104 (2017).

Z. Cao, Z. Li*, F. Wang*, and W. Liu*, Combining the spin-separated exact two-component relativistic Hamiltonian with the equation-of-motion coupled-cluster method for the treatment of spinCorbit splittings of light and heavy elements, Phys. Chem. Chem. Phys. 19, 3713 (2017).

W. Liu* and M. R. Hoffmann*, iCI: Iterative CI toward full CI, J. Chem. Theory Comput. 12, 1169 (2016); (E) 12, 3000 (2016).

P. Cassam-Chena¨ı*, B. Suo*, and W. Liu*, Decoupling electrons and nuclei without the BornOppenheimer approximation: The electron-nucleus mean-field configuration-interaction method, Phys. Rev. A 92, 012502 (2015).

Z. Li, H. Li, B. Suo, and W. Liu*, Localization of molecular orbitals: From fragments to molecule, Acc. Chem. Res. 47, 2758 (2014).

W. Liu* and M. R. Hoffmann*, SDS: The ‘static-dynamic-static’ framework for strongly correlated electrons, Theor. Chem. Acc. 133, 1481 (2014).

Z. Li, S. Shao, and W. Liu*, Relativistic explicit correlation: Coalescence conditions and practical suggestions, J. Chem. Phys. 136, 144117 (2012).

S. Mao, L. Cheng, W. Liu, and D. Mukherjee, A spin-adapted size-extensive state-specific multi-reference perturbation theory (I): Formal developments, J. Chem. Phys. 136, 024105 (2012).

S. Mao, L. Cheng, W. Liu, and D. Mukherjee, A spin-adapted size-extensive state-specific multireference perturbation theory with various partitioning schemes. II. Molecular applications, J. Chem. Phys. 136, 024106 (2012).

M. Yuan, Y. Zhang, Y. Xiao*, and W. Liu*, Sublinear scaling quantum chemical methods for magnetic shieldings in large molecules, J. Chem. Phys. 150, 154113 (2019).

Y. Xiao, Y. Zhang, and W. Liu*, Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals, J. Chem. Phys. 141, 164110 (2014).

Y. Xiao, Y. Zhang, and W. Liu*, New experimental NMR shielding scales mapped relativistically from NSR: Theory and application, J. Chem. Theory Comput. 10, 600 (2014).

Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor: Linear molecules, J. Chem. Phys. 139, 034113 (2013).

Y. Xiao and W. Liu*, Body-fixed relativistic molecular Hamiltonian and its application to nuclear spin-rotation tensor, J. Chem. Phys. 138, 134104 (2013).

Q. Sun, Y. Xiao, and W. Liu*, Exact two-component relativistic theory for NMR parameters: General formulation and pilot application, J. Chem. Phys. 137, 174105 (2012).

Y. Xiao, Q. Sun, and W. Liu*, Fully relativistic theories and methods for NMR parameters, Theor. Chem. Acc. 131, 1080 (2012).

L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding: Magnetically balanced gauge-including atomic orbitals, J. Chem. Phys. 131, 244113 (2009).

Q. Sun, W. Liu*, Y. Xiao, and L. Cheng, Exact two-component relativistic theory for nuclear magnetic resonance parameters, J. Chem. Phys. 131, 081101 (2009).

W. Kutzelnigg* and W. Liu*, Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation, J. Chem. Phys. 131, 044129 (2009).

L. Cheng, Y. Xiao, and W. Liu*, Four-component relativistic theory for NMR parameters: Unified formulation and numerical assessment of different approaches, J. Chem. Phys. 130, 144102 (2009); (E) 131, 1 (2009).

Y. Xiao, W. Liu*, L. Cheng, and D. Peng, Four-component relativistic theory for nuclear magnetic shielding constants: Critical assessments of different approaches, J. Chem. Phys. 126, 214101 (2007).

Y. Xiao, D. Peng, and W. Liu*, Four-component relativistic theory for nuclear magnetic shielding constants: The orbital decomposition approach, J. Chem. Phys. 126, 081101 (2007).

W. Liu* and Y. Xiao, Relativistic time-dependent density functional theories, Chem. Soc. Rev. 47, 4481-4509 (2018).

B. Suo*, K. Shen, Z. Li, and W. Liu*, Performance of TD-DFT for excited states of open-shell transition metal compounds, J. Phys. Chem. A 121, 3929-3942 (2017).

Z. Li* and W. Liu*, Critical assessment of TD-DFT for excited states of open-shell systems: I. Doublet-quartet transitions, J. Chem. Theory Comput. 12, 2517-2527 (2016).

Z. Li* and W. Liu*, Critical assessment of TD-DFT for excited states of open-shell systems: I. Doublet-doublet transitions, J. Chem. Theory Comput. 12, 238-260 (2016).

Z. Li, B. Suo, and W. Liu*, First order nonadiabatic coupling matrix elements between excited states: Implementation and application at the TD-DFT and pp-TDA levels, J. Chem. Phys. 141, 244105 (2014).

Z. Li and W. Liu*, First-order nonadiabatic coupling matrix elements between excited states: A Lagrangian formulation at the CIS, RPA, TD-HF, and TD-DFT levels, J. Chem. Phys. 141, 014110 (2014).

J. Liu, Y. Zhang, and W. Liu*, Photoexcitation of Light-Harvesting C-P-C60 Triads: A FLMOTD-DFT Study, J. Chem. Theory Comput. 10, 2436 (2014).

Z. Li, B. Suo, Y. Zhang, Y. Xiao, and W. Liu*, Combining spin-adapted open-shell TD-DFT with spin-orbit coupling, Mol. Phys. 111, 3741 (2013).

Z. Li and W. Liu*, Theoretical and numerical assessments of spin-flip time-dependent density functional theory, J. Chem. Phys. 136, 024107 (2012).

Z. Li and W. Liu*, Spin-adapted open-shell time-dependent density functional theory. III. An even better and simpler formulation, J. Chem. Phys. 135, 194106 (2011).

Z. Li, W. Liu*, Y. Zhang, and B. Suo, Spin-adapted open-shell time-dependent density functional theory. II. Theory and pilot application, J. Chem. Phys. 134, 134101 (2011).

Z. Li and W. Liu*, Spin-adapted open-shell random phase approximation and time-dependent density functional theory. I. Theory, J. Chem. Phys. 133, 064106 (2010).

F. Wu, W. Liu*, Y. Zhang, and Z. Li, Linear scaling time-dependent density functional theory based on the idea of “from fragments to molecule”, J. Chem. Theor. Comput. 7, 3643 (2011).

D. Peng, W. Zou, and W. Liu*, Time-dependent Quasirelativistic Density Functional Theory Based on the Zeroth-order Regular Approximation, J. Chem. Phys. 123, 144101 (2005).

J. Gao, W. Zou, W. Liu*, Y. Xiao, D. Peng, B. Song, and C. Liu, Time-dependent Fourcomponent Relativistic Density-Functional Theory for Excitation Energies. II. The Exchangecorrelation Kernel, J. Chem. Phys. 123, 054102 (2005).

J. Gao, W. Liu*, B. Song, and C. Liu, Time-dependent Four-component Relativistic Density Functional Theory for Excitation Energies, J. Chem. Phys. 121, 6658 (2004).